Введення поняття тригонометричних функцій числового аргументу

Сторінка 1

Насамперед потрібно згадати означення тригонометричних функцій кута і поширити їх на будь-яку градусну міру, ввести кут повороту. Крім того, слід переконати учнів, що існує відповідність між множиною дійсних чисел і множиною точок одиничного кола, для чого попередньо виконати таку вправу.

Приклад 1. Позначити на одиничному колі точки , в які відображується початкова т.Р0(1;0) при повороті навколо центра кола на кут радіанів, якщо , , , , , (Рис.2.2).

Розв'язання. За із формули довжини дуги, вираженої через радіанну міру, випливає , де – радіанна міра центрального кута і відповідної йому дуги. Це означає, що числове значення довжини дуги збігається з числовим значенням її радіанної міри.

Оскільки т., в яку відображається т.Р0(1;0), лежить на перетині осі у з колом і , , то т., в яку відображається Р0(1;0), лежатиме на колі між точками і . Точки і містяться на колі в 4-й чверті симетрично точкам і відносно осі .

Числу відповідає точка початок Р0 (1;0) – початок відліку дуг на одиничному колі, числу – т., яка є кінцем дуги, що дорівнює двом дугам .

Розв'язуючи цю вправу, небажано переходити від радіанної міри до градусної, хоч учням легше замінити 1 рад на 57°, а рад – на 90° і відшукати т. на дузі кола. Важливо навчити учнів знаходити відповідні точки на колі для кутів, заданих радіанною мірою, оскільки метою є ввести поняття тригонометричної функції довільного числа.

На завершення розв'язування цієї вправи доцільно розглянути координатну вісь, яка є дотичною до одиничного кола в т.Р0(1;0), має початком відліку цю точку й одиницю відліку, що дорівнює радіусу одиничного кола. Якщо намотувати цю координатну вісь на одиничне коло, то наочно виявляється відповідність між множиною R дійсних чисел і множиною точок одиничного кола.

Увагу учнів звертають на те, що кожній т. на одиничному колі відповідають її абсциса й ордината, які також залежать від числа . Тому маємо ще дві залежності між дійсним числом і абсцисою та ординатою відповідної т., в яку відображується початкова т.Р0(1;0) одиничного кола при повороті навколо центра кола на кут радіанів. Отже, існують відповідності між множиною дійсних чисел і множиною абсцис і ординат т. одиничного кола. Ці залежності (відповідності) дістали назву тригонометричних функцій числа або тригонометричних функцій числового аргументу.

Страницы: 1 2 3 4 5 6

Нове про педагогіку:

Запровадження двоциклічної системи навчання: бакалавр — магістр
Поступовий перехід класичних університетів України до двох освітньо кваліфікаційних рівнів: бакалавр та магістр. Підготовка бакалаврів та магістрів різних спеціальностей на економічних факультетах кл ...

Рівні самостійної діяльності учнів
Самостійна робота, виступаючи специфічним педагогічним засобом організації та управління самостійною діяльністю учня, мас подвійну природу. З одного боку, вона постає як навчальне завдання, тобто об' ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com