Задачі є невід'ємною складовою частиною курсу геометрії в середній школі. Дійсно, позбавлений задач курс елементарної геометрії представляв би собою лише групу теорем розміщених більшменш послідовно. Користі від вивчення такого курсу дуже мало.
Як відомо, вправи в геометрії залежно від умови й завдання ділять на три групи: задачі на обчислення, доказ і на побудову.
У задачах на обчислення потрібно виразити невідомі величини (відрізки, кути, площі, об'єми) або їхні відносини через відомі параметри. Якщо параметри дані в загальному виді, то результат виходить у буквах; якщо ж умова містить числові значення параметрів, відповідь доводиться до числа.
У задачах на доказ необхідно встановити наявність певних співвідношень між елементами розглянутої фігури: рівність або нерівність відрізків, кутів, паралельність або перпендикулярність прямих, площин і т.д. Іноді задачі цього типу можуть бути оформлені і як задачі на обчислення; наприклад, довести, що деякий кут дорівнює 45°, що об'єм однієї фігури в стількито раз більше об'єму іншої фігури.
Менш поширені задачі на дослідження. У таких вправах результат заздалегідь не повідомляється. Потрібно з'ясувати чи лежить деяка крапка на даній прямій (на даній площині), чи перетинаються дані окружності, чи паралельні дані прямі й т.п., визначити, який з даних відрізків більше, до якій зі сторін трикутника ближче дана крапка, установити залежність між перерахованими в умову елементами фігури.
У задачах на побудову невідомі величини визначаються в результаті виконання ряду геометричних побудов (за допомогою припустимих геометричних інструментів або в обумовленій проекції). Як правило, мова йде про побудову геометричної фігури за деяким даними про неї. У стереометрії нерідко замість відрізків і кутів дається зображення (наприклад, піраміди), на якому потрібно виконати побудову(наприклад, знайти перетин), тобто елементи фігури задаються їхнім положенням (на проекційному кресленні).
Вирішуючи задачі на побудову, учні здобувають перші теоретичні й практичні основи «графічної грамотності», знайомляться з найбільш уживаними прийомами їхнього рішення, з інструментами, використовуваними в різних умовах роботи (при креслярськоконструкторській практиці, при розмітці, при виконанні побудов на місцевості). У них розвиваються просторова уява, конструктивні здатності, кмітливість, винахідливість, тобто такі якості, які необхідні працівникам багатьох професій.
Доведення правильності рішення задачі і її дослідження сприяють кращому засвоєнню учнями теоретичного матеріалу, розвитку їхнього логічного мислення.
Навчання учнів геометричним побудовам переслідує дві мети: навчання виконанню властиво геометричних побудов і навчання рішенню задач на побудову.
Природно, що кожному із цих питань у різних класах повинна бути приділене різна увага.
В VI класі основна увага звертається на навчання учнів виконанню найпростіших геометричних побудов і їхньому систематичному використанню при формуванні й закріпленні найважливіших понять: перпендикулярність і паралельність прямих, найголовніші лінії в трикутнику, симетрія відносно прямій і т.д.
До кінця VI класу учні повинні одержати вже досить міцні навички в рішенні ряду конструктивних задач, включених у програму VI класу, коштовних із практичної точки зору й необхідних для подальшого вивчення матеріалу.
Нове про педагогіку:
Аналіз психолого-педагогічної літератури з екологічного виховання молодших
школярів
Екологічна освіта – порівняно нова галузь педагогічної теорії та практики. Вона має забезпечувати реалізацію принципових загально-дидактичних положень, таких як системність і систематичність, наступн ...
Процес формування у молодших школярів уміння
застосовувати природничі знання у нових навчальних ситуаціях
У результаті аналізу психолого-педагогічної літератури нами встановлено, що ефективність процесу формування в учнів уміння застосовувати знання у новій навчальній ситуації залежить від наступних педа ...