Роль практичного розв’язування геометричних задач

Педагогіка і освіта » Розвиток логічного мислення учнів у процесі вивчення геометрії » Роль практичного розв’язування геометричних задач

Сторінка 2

Задачі є невід'ємною складовою частиною курсу геометрії в середній школі. Дійсно, позбавлений задач курс елементарної геометрії представляв би собою лише групу теорем розміщених більшменш послідовно. Користі від вивчення такого курсу дуже мало.

Як відомо, вправи в геометрії залежно від умови й завдання ділять на три групи: задачі на обчислення, доказ і на побудову.

У задачах на обчислення потрібно виразити невідомі величини (відрізки, кути, площі, об'єми) або їхні відносини через відомі параметри. Якщо параметри дані в загальному виді, то результат виходить у буквах; якщо ж умова містить числові значення параметрів, відповідь доводиться до числа.

У задачах на доказ необхідно встановити наявність певних співвідношень між елементами розглянутої фігури: рівність або нерівність відрізків, кутів, паралельність або перпендикулярність прямих, площин і т.д. Іноді задачі цього типу можуть бути оформлені і як задачі на обчислення; наприклад, довести, що деякий кут дорівнює 45°, що об'єм однієї фігури в стількито раз більше об'єму іншої фігури.

Менш поширені задачі на дослідження. У таких вправах результат заздалегідь не повідомляється. Потрібно з'ясувати чи лежить деяка крапка на даній прямій (на даній площині), чи перетинаються дані окружності, чи паралельні дані прямі й т.п., визначити, який з даних відрізків більше, до якій зі сторін трикутника ближче дана крапка, установити залежність між перерахованими в умову елементами фігури.

У задачах на побудову невідомі величини визначаються в результаті виконання ряду геометричних побудов (за допомогою припустимих геометричних інструментів або в обумовленій проекції). Як правило, мова йде про побудову геометричної фігури за деяким даними про неї. У стереометрії нерідко замість відрізків і кутів дається зображення (наприклад, піраміди), на якому потрібно виконати побудову(наприклад, знайти перетин), тобто елементи фігури задаються їхнім положенням (на проекційному кресленні).

Вирішуючи задачі на побудову, учні здобувають перші теоретичні й практичні основи «графічної грамотності», знайомляться з найбільш уживаними прийомами їхнього рішення, з інструментами, використовуваними в різних умовах роботи (при креслярськоконструкторській практиці, при розмітці, при виконанні побудов на місцевості). У них розвиваються просторова уява, конструктивні здатності, кмітливість, винахідливість, тобто такі якості, які необхідні працівникам багатьох професій.

Доведення правильності рішення задачі і її дослідження сприяють кращому засвоєнню учнями теоретичного матеріалу, розвитку їхнього логічного мислення.

Навчання учнів геометричним побудовам переслідує дві мети: навчання виконанню властиво геометричних побудов і навчання рішенню задач на побудову.

Природно, що кожному із цих питань у різних класах повинна бути приділене різна увага.

В VI класі основна увага звертається на навчання учнів виконанню найпростіших геометричних побудов і їхньому систематичному використанню при формуванні й закріпленні найважливіших понять: перпендикулярність і паралельність прямих, найголовніші лінії в трикутнику, симетрія відносно прямій і т.д.

До кінця VI класу учні повинні одержати вже досить міцні навички в рішенні ряду конструктивних задач, включених у програму VI класу, коштовних із практичної точки зору й необхідних для подальшого вивчення матеріалу.

Страницы: 1 2 3 4 5

Нове про педагогіку:

Біполярні транзистори
Біполярний транзистор – монокристал напівпровідника, в якому створені три ділянки з типами провідності, що чергуються (p-n-p або n-p-n). Середню ділянку називають базою, а крайні – колектором і еміте ...

Психолого–педагогічні проблеми забезпечення оптимізації учбової діяльності
У пошуках ефективних шляхів у розв'язанні проблеми оптимізації навчального процесу, шляхів розв'язання проблеми оптимізації навчального процесу Л. Арістова наголошує на вимогах до сучасного уроку: 1. ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com