Роль геометричних означень та понять

Сторінка 2

Подруге, “Начала” послужили джерелом, з якого черпали і на якому формувались уми багатьох видатних учених у наступні два тисячоліття, і основою для подальшого розвитку геометричних ідей. “Начала” Евкліда тісно пов’язані із сучасною людською культурою: з одного боку, всі сучасні шкільні підручники геометрії, за якими вчаться у школах усіх країн, так чи інакше мають своїм прообразом “Начала”.

Нарешті, велике історичне значення “Начал” Евкліда, як підкреслював Ф.Клейн, полягає в тому, що вони передали наступним поколінням ідеал цілком логічної обробки геометрії. “Начала” органічно пов’язані з розвитком обґрунтування математики загалом й геометрії зокрема.

Найхарактернішою особливістю математики є логічно послідовний ряд тверджень. Ця характерна риса точної науки яскраво виявилася вже в найдавніших її розділах арифметиці і геометрії.

Згодом з'явилися в математиці й формули особлива мова для запису міркувань і теорем, мова зручна, точна і лаконічна. Наприклад, відому теорему Піфагора можна сформулювати словами: “Квадрат гіпотенузи прямокутного трикутника дорівнює сумі квадратів катетів”. Але математик надасть перевагу короткій рівності:

Як бачимо, в теоремі Піфагора йдеться про властивість прямокутного трикутника. Узагалі, в будьякій теоремі чи формулі виражені властивості математичних об'єктів: чисел, фігур, математичних операцій, рівнянь, функцій .

З’ясуємо, як математики вводять у свої міркування нові об'єкти – означують математичні поняття.

Що таке квадрат? Згідно означення: це прямокутник, у якого всі сторони рівні між собою. Поняття квадрата, як бачимо, подається через більш загальне поняття прямокутника. А що таке прямокутник? Це паралелограм, у якого всі кути прямі. Ще один крок до поняття більш елементарного. А паралелограм? Це чотирикутник, у якого протилежні сторони попарно паралельні.

Такий спосіб побудови математичних понять використовував ще Аристотель. Великий древньогрецький філософ назвав його так: означення через рід і видову відмінність.

Наприклад, прямокутник відноситься до роду паралелограмів, а його видова відмінність полягає в тому, що усі його кути прямі. Паралелограм відноситься до роду чотирикутників, а видова відмінність – паралельність протилежних сторін. Поняття чотирикутника, у свою чергу, визначається через поняття відрізка, а той визначається як частина прямої, що міститься між двома точками цієї прямої, включаючи і ці точки.

Так у ході свого аналізу ми добралися до основних геометричних понять, про які мова йде в аксіомах геометрії “точка” і “пряма”, “лежати” і “між”.

А як визначаються основні поняття? Подивимось як це робив батько геометрії Евклід.

Відкриємо знову його «Начала»: “Точка є те, що не має частин. Лінія це довжина без ширини. Кінці ж лініїточка. Пряма лінія є та, що однаково розташована стосовно точок на ній .”.

Чи задоволені Ви таким означенням? Мабуть, ні! Напевно, виникають питання: Хіба тільки про пряму лінію можна сказати, що вона однаково розташована відносно своїх точок? Адже такою ж властивістю володіє й коло. А що таке довжина? ширина? Хіба ці поняття теж не вимагають означень?

Особливо над цими питаннями математики стали замислюватися на межі XIX і XX століть. Глибокий аналіз Евклідової геометрії показав, що не такою вже і стрункою є ця древня споруда. Недоліки в її конструкції містяться у фундаменті. Почалася кропітка робота, спрямована на усунення цих недоліків.

То як же виглядають початки геометрії у сучасному викладі? Візьмемо книгу німецького математика Давида Гильберта ”Основи геометрії”:

“Ми мислимо три різні системи речей: речі першої системи ми називаємо точками, речі другої системи ми називаємо прямими, речі третьої системи ми називаємо площинами. Ми мислимо точки, прямі й площини у визначених співвідношеннях і позначаємо ці співвідношення різними словами, а саме: належати, між, конгруентний (тобто такі, що суміщаються при накладанні), паралельний, неперервний”.

Як бачимо, Гильберт і не збирається означувати основні об’єкти геометрії точку, пряму, площину. Ці поняття вважаються основними, неозначуваними.

Страницы: 1 2 

Нове про педагогіку:

Психолого-педагогічні основи формування комунікативних умінь і навичок молодших школярів
Коли йдеться про гармонійне виховання особистості, насамперед мають на увазі музичну освіту людини, вміння розумітися на мистецтві, знання іноземних мов, фізичний розвиток тощо. Та чи часто доводитьс ...

Основні проблеми впровадження ідей релігійного виховання в початковій школі
Школа у тісній співпраці з сім'єю на основі народної моралі, зокрема релігійної, здатна посіяти здоровий моральний клімат у молодіжному середовищі. На це свого часу звергали увагу визначні педагоги т ...

Навігація по сайту

Copyright © 2019 - All Rights Reserved - www.ipedahohika.com