Поняття як перший ступінь логічних форм мислення

Сторінка 3

„Центральним кутом у колі називається плоский кут з вершиною в центрі цього кола” (тут „плоский кут” – родове поняття, а властивість вершини плоского кута лежати в центрі кола – видова ознака);

„Паралелограм – це чотирикутник, в якого протилежні сторони паралельні” –(тут „чотирикутник” родове поняття, а властивість його протилежних сторін бути паралельними видова ознака);

„Якщо основою призми є паралелограм, то вона називається паралелепіпедом” (тут поняття „призма” – родове, а властивість призми мати в основі паралелограм видова ознака) та інше.

Означення через найближчий рід і видову ознаку застосовується тоді, коли відомо, що означуване поняття є поняттям про предмет, який належить до одного з видів певного роду. При такому введені понять у самому означенні не вказується спосіб виникнення означуваного об'єкта. Але окремі означення можуть розглядати предмет і за способом його утворення або виникнення . При цьому ознаки змісту поняття розглядається як зумовлені самим способом виникнення предмета. Означення такого типу називаються генетичними ( від слова „генезис”, що означає „виникнення”). Прикладами таких означень у шкільній математиці є: „Бісектрисою кута –називається промінь, який виходить з його вершини, проходить між його сторонами і ділить кут пополам”; „пірамідою називається багатогранник, утворений усіма відрізками, які сполучають дану точку – вершину піраміди – з точками плоского багатокутника – основи піраміди” та інші. Генетичні означення задають можливий спосіб утворення предмета і водночас властивості цього предмета. Окремим видом генетичних означень є індуктивні означення.

Нові математичні поняття вводять також за допомогою описування їх властивостей. Такі означення називають дескриптивними, або дескрипціями. Однією з дескрипцій числа може бути така: „ це число, яке будучи помноженим на довжину діаметра, дає довжину кола”.

Коли означення якогось поняття через рід і вид здійснити важко, то часто звертаються до такого виду означень, як означення через абстракцію.

Також означення поняття можно виконати через аксіому.Так, у шкільному курсі геометрії система аксіом дає можливість встановити співвідношення між такими основними поняттями, як „точка”, „пряма”, „площина”, і цим самим дати їм неявне означення.

Щоб поняття стало надійним інструментом пізнання, були коректними, їх означення потрібно будувати, додержуючи ряду вимог, порушення яких призводить до логічних помилок. Розглянемо ці вимоги.

1.Означення повинно бути співмірним, тобто обсяги означуваного і означуючого понять мають бути рівними між собою. Так, в означенні „квадратом називається прямокутник, у якого всі сторони рівні” обсяги означуваного поняття („квадрат”) і означуючого поняття („прямокутник, усі сторони якого рівні”) збігаються, усі квадрати є такими прямокутниками і всі такі прямокутники є квадратами. Означення, в якому вимоги співмірності не виконується, неправильне означення, тобто в ньому допущено логічну помилку. Наприклад, означення „Квадратом називається чотирикутник у якого всі сторони рівні” неправильне, бо воно неспівмірне: ромб теж рівносторонні чотирикутник. Помилковість цього означення полягає в тому, що за його допомогою не можна точно відрізнити квадрат від ромба.Таке помилкове означення, коли обсяг означуючого поняття більший від обсягу означуваного поняття називається занадто широким. Неспівмірне означення може бути й занадто вузьким. Так називається означення, коли обсяг означуючого поняття менший від обсягу означуваного поняття.

2.Означення не повинно містити в собі так званого порочного кола. Порочним колом називається такий спосіб означення, коли поняття начебто означується через інше поняття, однак це інше поняття може стати зрозумілим тільки через означуване поняття. Наприклад, якщо прямий кут означувати як кут, сторони якого взаємно перпендикулярні, а взаємно перпендикулярні

прямі – як прямі, що утворюють прямий кут, то виникнення порочного кола очевидне.

3. Означення не повинно бути лише заперечним.Заперечним називається таке означення, в якому задаються лише ознаки, що належать даному поняттю, але у книжці Евкліда „Начала” є таке означення поняття точки: „Точка це те, що не має частин”. З такого означення не можна дізнатия про істотні ознаки поняття точки. Тому це означення мало придатне для пізнання властивостей предмета. Це пояснюється тим, що точка – настільки простий і однорідний елемент простору, що доповнити його ознаками не вдається.

Страницы: 1 2 3 4

Нове про педагогіку:

Розробка змісту професійної підготовки фахівця
На рівні етапної появи цілі глобальна мета диференціюється в основні цілі по етапах підготовки. У разі професійної освіти до етапів підготовки відносяться різні цикли дисциплін: гуманітарні, соціальн ...

Роль курсу "Економіка" в системі загальної та економічної освіти. Особливості навчання у вивченні курсу "Економіка" учнями старшого шкільного віку
Перехід до ринкових відносин об'єктивно породжує гостру потребу в реалізації підприємницького потенціалу громадян України на основі ефективного використання їх господарської ініціативи. Позбавлення с ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com