Поняття як перший ступінь логічних форм мислення

Сторінка 2

Непорівнянні поняття не мають найближчого спільного родового поняття, оскільки вони відображають предмети різних, віддалених предметів галузей. Наприклад, поняття „трикутник” і „хоробрість” непорівнянні – вони відображають предмети, які не мають спільних ознак. Предметом дослідження нормальної логіки є порівнянні поняття, бо вони відіграють важливу роль у мисленні і пізнанні дійсності.

Порівнянні поняття поділяють на сумісні і несумісні. Якщо два порівняні поняття в своєму змісті не мають ознак, що виключають повний або частковий збіг обсягів цих понять, то їх називають сумісними.

Сумісність поняття включають у свій обсяг поняття, які перебувають у відношенні тотожності ( рівнозначності), підпорядкованості та часткового збігу(перерізу). У відношенні тотожності або рівнозначності перебуває поняття, які мають однаковий обсяг, але відрізняються одне від одного змістом. Це, наприклад, поняття перпендикуляра, проведеного в площині прямої, яка має той самий напрям і проходить через цю саму точку на колі. Обидва предмета мають різні ознаки, але один і той самий обсяг, бо такий перпендикуляр і така пряма збігаються.

У мові тотожні поняття називаються синонімами. У відношенні підпорядкування перебувають поняття, обсяг першого з яких повністю входить в обсяг другого тільки частково входить в обсяг першого. Перше поняття називається підпорядкованим, а друге – підпорядкованим.

Несумісні поняття –це поняття, обсяги яких зовсім не збігаються. Множини, відповідні цим поняттям, не мають спільних елементів. Зміст таких понять виключає будьяку можливість як повного, так і часткового обсягу. До несумісних належать поняття, які перебувають у відношенні співпідпорядкування, протилежнності і суперечності.

У відношенні співпідпорядкування перебувають поняття, обсяги яких входять у більш широке поняття якому вони однаковою мірою підпорядковуються. Множини співпідпорядкуваних понять не мають спільних елементів. Зміст цих понять має спільну родову ознаку але кожне з них має ще й свої власні видові ознаки.

У відношенні протилежності ( або супротивності, контрарності – від латинського слова contrarium – протилежність ) перебуває поняття, обсяги яких входять в обсяг підпорядковуючого, але повністю його не вичерпують. Зміст цих понять виключають зміст протилежного йому поняття. Між протилежними поняттями можливе третє. Прикладом понять, що перебувають у відношені протилежності, є „гострокутний трикутник” „тупокутний трикутник” (між ними можливе третє поняття – „прямокутний три кутник”, спільною родовою ознакою їх є поняття „трикутник”.

У відношенні суперечності перебувають такі два сумісні поняття, кожне з яких включає зміст іншої. Обсяги їх не збігаються і водночас вичерпують обсяг родового поняття. Між ними неможливе третє поняття. Такими поняттями будуть: „рівний”„нерівний”, „гострий”„негострий” , „ціле число”„неціле число”, „більше”„не більше” і так далі.

Поділ поняття – це логічна дія, яка полягає в мисленому поділі обсягу (роду) поняття на видові поняття, з яких відображені види предметів.

Особливим видом поділу є також кваліфікація. Тут не обмежується поділом поняття на класи, а класи поділяють на підкласи, підкласи –на ще дрібніші частини і так далі.

Логічний поділ ( утому числі і класифікація) має велике значення при вивченні будьякої науки, бо розчленовуючи обсяг поняття на окремі класи чи види, що мають і подібні, і відмінні ознаки, ми маємо можливість глибше вивчати поняття конкретної науки і зв’язки між ними.

Розглянемо означення понять

Поняття вводять за допомогою логічної операції означення.Особливу велику роль означення відіграють у математиці. Вони допомогають виділити даний предмет з множини інших об’єктів. Під означенням ми розуміємо таку логічну операцію, за допомогою якої розкривається зміст поняття. Отже, означити поняття – це перелічити всі істотні ознаки об’єктів, що входять у дане поняття. Словесне позначення поняття називається терміном. Наприклад ,

„кут”, „коло”, „переріз множини”терміни. Поняття, яке означується , називають означуваним, а те поняття чи групу понять, за допомогою яких вводиться означуване поняття , називають означуючими поняттями. Наприклад „Ромбом називається паралелограм, сторони якого рівні”. У цьому означенні „паралелограм” – означуюче, а „ромб” –означуване поняття.

У математиці існують різні види означень. Найпоширеніший з них – означення через найближчий рід і видову ознаку. Цей спосіб полягає в тому, що називаються, по перше, найближчий рід, до якого належить означуване поняття, і подруге, особлива ознака ( або кілька ознак) даного поняття, що характеризує його як один з видів зазначеного роду. У курсі шкільної математики існують такі означення :

Страницы: 1 2 3 4

Нове про педагогіку:

Аналіз літературних джерел з питання використання рухливих ігор для дітей дошкільного віку
Як звернутись до історії людської світової культури, то видно буде, що усі народні ігри виникли зовсім не тільки заради розваги, а зв’язані були з вимогами життя. Колись для народів, що не знали куль ...

Творчі завдання для обдарованих дітей
Математична кмітливість Математичні лічилки (1 - 2 класи ) 1. Півень залетів на тин, А там півник ще один, Скільки півників усіх? Полічить швиденько їх. 2. В клас зайшов Мишко, А за ним – Петько, А з ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com