Розробка лекцій, практичних робіт, опорних конспектів

Сторінка 3

уміти: визначати диференціальне рівняння з переліку рівнянь, складати рівняння за умовою задачі, що приводить до диференціального рівняння;

здатні: знаходити невизначений інтеграл (з курсу математичного аналізу).

Основні поняття: диференціальне рівняння (ДР), звичайне ДР, ДР у частинних похідних, порядок ДР, степінь, розв'язок.

Обладнання: підручники, дидактичний матеріал (таблиці), креслярські матеріали, мультимедійний проектор, комп’ютер.

Час: 2 год.

План лекції

Поняття диференціального рівняння і його розв'язку.

Приклади задач, які приводять до диференціального рівняння.

Список літератури

Еругин Р.П. и др. Курс обыкновенных дифференциальных уравнений.

Пономарев К.К. Составление дифференциальных уравнений.

Pudy A.E., Rakov S.A. Mathematical Analysis. Differential Equations.

Текст лекції

1.Поняття диференціального рівняння і його розв'язку.

В диференціальному численні за заданою функцією одного чи більшого числа змінних вивчались властивості цієї функції (монотонність, випуклість і ін.). Однак більшість задач практичного застосування мають характер обернених: треба знайти функцію, яка б мала наперед задані властивості.

При вивченні фізичних явищ часто не вдається безпосередньо знайти закон, який зв’язує розглядувані величини, але в той же час порівняно легко встановлюється залежність між тими ж величинами і їх похідними або диференціалами.

І ті і другі задачі приводять до рівнянь, що містять невідомі функції під знаками похідних і диференціалів.

Означення 1. Рівняння, в яких невідома функція входить під знаком похідної або диференціала, називаються диференціальними рівняннями. Наприклад, диференціальними рівняннями є такі:

Означення 2. Якщо в диференціальному рівнянні невідома функція є функцією однієї незалежної змінної, то таке диференціальне рівняння називається звичайним.

У загальному випадку його можна записати у вигляді

(1)

де - незалежна змінна, - функція від , яка підлягає визначенню, - її похідні.

Означення 3. Якщо невідома функція, яка входить у диференціальне рівняння, є функцією двох і більшого числа незалежних змінних, то таке диференціальне рівняння називається рівнянням у частинних похідних.

Рівняння 1), 2) і 4) є звичайними диференціальними рівняннями, а 3) – рівняння в частинних похідних.

Означення 4. Порядком диференціального рівняння називається максимальний порядок похідної (або диференціала), що входить у нього.

Рівняння 1) і 4) є рівняннями першого порядку. Рівняння (1) – звичайне диференціальне рівняння ого порядку.

Означення 5. Якщо ліва частина рівняння (1) є многочленом відносно похідної максимального порядку від невідомої функції, то степінь цього многочлена називається степенем даного диференціального рівняння. Наприклад, рівняння

п’ятого степеня другого порядку, а рівняння

другого степеня третього порядку.

У диференціальному рівнянню (1) ого порядку незалежна змінна , шукана функція і її похідні до ого порядку включно в явному вигляді можуть бути, але можуть окремо або всі разом бути відсутніми. Наявність же в явному вигляді похідної ого порядку необхідна, щоб це рівняння було диференціальним. Наприклад, є диференціальним рівнянням третього порядку, хоча в ньому в явному вигляді й відсутні і .

Страницы: 1 2 3 4 5 6 7 8

Нове про педагогіку:

Загальні питання підготовки і проведення експериментального дослідження
На першому етапі був проведений констатувальний експеримент з метою з’ясування ефективності впровадження курсу «етика діяльності соціального педагога» у формуванні професійної етики соціального педаг ...

Методика обстеження сформованості лексико-граматичної сторони мовлення у дітей із ЗНМ старшого дошкільного віку
Правильно організоване корекційне навчання і виховання дітей дошкільного віку в умовах логопедичної групи потребує обстеження мовних та немовних процесів, сенсомоторної сфери, інтелектуальнго розвитк ...

Навігація по сайту

Copyright © 2019 - All Rights Reserved - www.ipedahohika.com