Розробка лекцій, практичних робіт, опорних конспектів

Сторінка 11

Підставляючи й у (2), одержуємо розв'язок неоднорідного рівняння:

,

. (6)

Розв'язок однорідного рівняння можна записати у вигляді:

, , ,

, .

Приклад. Розв'язати рівняння

.

Розв'язок. Скориставшись (2), (3) , , маємо:

навчання диференціальний рівняння конспект

, .

Згідно методу виберемо функцію такою, щоб , тоді

, ,

.

, , , ,

.

Підставляючи й , одержуємо загальний розв'язок рівняння:

.

2. Рівняння Бернуллі

Означення 2. Рівнянням Бернуллі називається рівняня виду або .

Рівняння Бернуллі відрізняється від лінійного правою частиною і зводиться до послідовності рівнянь з відокремлюючими змінними за тією ж схемою, що і лінійне, з підстановкою

або

Приклад 1. Знайти загальний розв'язок диференціального рівняння .

10. Визначаємо тип диференціального рівняння (таблиця 1):

- рівняння Бернуллі, де .

20. Запишемо підстановку:

.

30. Здійснимо підстановку в дане рівняння:

40. Запишемо послідовність рівнянь відносно функцій та . Згрупуємо перший і третій члени рівняння:

Виберемо функцію так, щоб вона перетворювалася в нуль дужку, отримаємо послідовність функцій:

50. Знайдемо функції та . Кожне з рівнянь послідовності є рівнянням з відокремлюючими змінними:

Страницы: 6 7 8 9 10 11 12 13 14 15 16

Нове про педагогіку:

Уточнення й поповнення уявлень і мовлення учнів допоміжної школи
Щоб забезпечити достатні умови для здійснення дітьми мовленнєвої діяльності, необхідно працювати над створенням її основ, і в першу чергу над уточненням уявлень учнів про навколишню дійсність. Розумо ...

Методика експериментального дослідження
Вивчення та узагальнення теоретичних основ досліджуваної проблеми та аналіз педагогічного досвіду у цій галузі дозволили сформулювати робочу гіпотезу нашого дослідження: якщо на уроках в умовах малок ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com