Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах

Педагогіка і освіта » Методика навчання диференціальних рівнянь майбутніх вчителів математики в педагогічних університетах » Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах

Сторінка 2

Основи цієї науки були закладені працями Д'аламбера, Ейлера, Бернуллі, Лагранжа і інших учених. Цікаве те, що багато хто з них був не тільки математиками, але і астрономами, механіками, фізиками. Розроблені ними при дослідженні конкретних завдань математичної фізики ідеї і методи виявилися застосовними до вивчення широких класів диференціальних рівнянь, що і послужило в кінці XIX століття основою для розвитку загальної теорії диференціальних рівнянь.

Найважливішими рівняннями математичної фізики є: рівняння Лапласа, рівняння теплопровідності, хвилеві рівняння.

Важливо відзначити, що для перевірки правильності математичної моделі дуже важливі теореми існування вирішень відповідних диференціальних рівнянь, оскільки математична модель не завжди адекватна конкретному явищу і з існування рішення реальної задачі (фізичною, хімічною, біологічною) не виходить існування рішення відповідної математичної задачі.

В даний час важливу роль в розвитку теорії диференціальних рівнянь грає застосування сучасних електронних обчислювальних машин. Дослідження диференціальних рівнянь часто полегшує можливість провести обчислювальний експеримент для виявлення тих або інших властивостей їх рішень, які потім можуть бути теоретично обгрунтовані і стануть фундаментом для подальших теоретичних досліджень.

Отже, перша особливість теорії диференціальних рівнянь - її тісний зв'язок із їхніми застосуваннями. Іншими словами, можна сказати, що теорія диференціальних рівнянь народилася із застосувань. У цьому своєму розділі - теорії диференціальних рівнянь - математика перш за все виступає як невід'ємна частина природознавства, на якій грунтується вивід і розуміння кількісних і якісних закономірностей, складового змісту наук про природу.

Саме природознавство є для теорії диференціальних рівнянь чудовим джерелом нових проблем, воно значною мірою визначає напрям їх досліджень, дає правильну орієнтацію цим дослідженням.

Вивчення рівнянь з частковими похідними в загальному випадку - таке складне завдання, що якщо хто-небудь навмання напише яке-небудь, навіть лінійне диференціальне рівняння з частковими похідними, то з великою вірогідністю жоден математик не зможе про нього сказати що-небудь і, зокрема, з'ясувати, чи має це рівняння хоч би одне рішення.

Ф. Клейн в книзі "Лекції про розвиток математики в XIX сторіччі" писав, що "математика супроводжувала по п'ятах фізичне мислення і, назад, отримала найбільш могутні імпульси з боку проблем, що висувалися фізикою".

Другою особливістю теорії диференціальних рівнянь є її зв'язок з іншими розділами математики, такими, як функціональний аналіз, алгебра і теорія ймовірності. Теорія диференціальних рівнянь і, особливо теорія рівнянь з частковими похідними, широко використовують основні поняття, ідеї і методи цих областей математики і, більш того, впливають на їх проблематику і характер досліджень. Деякі великі і важливі розділи математики були викликані до життя завданнями теорії диференціальних рівнянь. Класичним прикладом такої взаємодії з іншими областями математики є дослідження коливань струни, що проводилися в середині XVIII століття.

При вивченні конкретних диференціальних рівнянь, що виникають в процесі вирішення фізичних завдань, часто створювалися методи, що володіють великою спільністю і застосовувалися без строгого математичного обгрунтування до широкого круга математичних проблем. Такими методами є, наприклад, метод Фурье, метод Рітца, метод Галеркіну та інші.

У перший період розвитку теорії звичайних диференціальних рівнянь одним з основних завдань було знаходження загального розв’язку в квадратурі, тобто через інтеграли від відомих функцій (цим займалися Ейлер, Ріккаті, Лагранж, Д'аламбер і ін.). Завдання інтеграції диференціальних рівнянь з постійними коефіцієнтами зробили великий вплив на розвиток лінійної алгебри.

Страницы: 1 2 3

Нове про педагогіку:

Християнська мораль у системі моральних цінностей людини
Абсолютно вічні цінності — загальнолюдські цінності, що мають універсальне значення та необмежену сферу застосування (доброта, правда, любов, чесність, гідність, краса, мудрість, справедливість та ін ...

Розумовий розвиток: сутність, значення, проблеми
Нові суспільні відносини (економічні, політичні, правові, громадянські та інші), що складаються в нашій країні, передбачають формування відповідної різнобічне розвиненої особистості носія цих відноси ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com