Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах

Педагогіка і освіта » Методика навчання диференціальних рівнянь майбутніх вчителів математики в педагогічних університетах » Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах

Сторінка 1

Теорія диференціальних рівнянь є одним з найбільших розділів сучасної математики. Щоб охарактеризувати її місце в сучасній математичній науці, перш за все, необхідно підкреслити основні особливості теорії диференціальних рівнянь, математики, що складається з двох областей: теорії звичайних диференціальних рівнянь і теорії рівнянь з частковими похідними.

Перша особливість - це безпосередній зв'язок теорії диференціальних рівнянь з їх широким спектром застосування. Характеризуючи математику як метод проникнення в таємниці природи, можна сказати, що основним шляхом застосування цього методу є формування і вивчення математичних моделей реального світу. Вивчаючи будь-які фізичні явища, дослідник, перш за все, створює його математичну ідеалізацію або, іншими словами, математичну модель, тобто, нехтуючи другорядними характеристиками явища, він записує основні закони в математичній формі. Дуже часто ці закони можна виразити у вигляді диференціальних рівнянь. Такими виявляються моделі різних явищ механіки суцільного середовища, хімічних реакцій, електричних і магнітних явищ і ін.

Досліджуючи отримані диференціальні рівняння разом з додатковими умовами, які, як правило, задаються у вигляді початкових і граничних умов, математик отримує відомості про явище, що відбувається, іноді може дізнатися його минуле і майбутнє. Вивчення математичної моделі математичними методами дозволяє не тільки отримати якісні характеристики фізичних явищ і розрахувати із заданим ступенем точності хід реального процесу, але і дає можливість проникнути в суть фізичних явищ, а іноді передбачити і нові фізичні ефекти. Буває, що сама природа фізичного явища підказує і підходи, і методи математичного дослідження. Критерієм правильності вибору математичної моделі є практика, зіставлення даних математичного дослідження з експериментальними даними.

Для складання математичної моделі у вигляді диференціальних рівнянь потрібно, як правило, знати тільки локальні зв'язки і не потрібна інформація про все фізичне явище в цілому. Математична модель дає можливість вивчати явище в цілому, передбачити його розвиток, робити кількісні оцінки змін, що відбуваються з часом. Нагадаємо, що на основі аналізу диференціальних рівнянь так були відкриті електромагнітні хвилі, і лише після експериментального підтвердження Герцем фактичного існування електромагнітних коливань стало можливим розглядати рівняння Максвела як математичну модель реального фізичного явища.

Як відомо, теорія звичайних диференціальних рівнянь почала розвиватися в XVII столітті одночасно з виникненням диференціального і інтегрального числення. Можна сказати, що необхідність вирішувати диференціальні рівняння для потреб механіки, тобто знаходити траєкторії рухів, в свою чергу, з'явилася поштовхом для створення Ньютоном нового числення. Органічний зв'язок фізичного і математичного ясно виявилася в методі флюксій Ньютона. Закони Ньютона є математичною моделлю механічного руху. Так вдалося вирішити завдання, які протягом довгого часу не піддавалися рішенню. У небесній механіці виявилося можливим не тільки отримати і пояснити вже відомі факти, але і зробити нові відкриття (наприклад, відкриття Льоверье в 1846 році планети Нептун на основі аналізу диференціальних рівнянь).

Звичайні диференціальні рівняння виникають тоді, коли невідома функція залежить лише від однієї незалежної змінної. Співвідношення між незалежною змінною, невідомою функцією і її похідними до деякого порядку складає диференціальне рівняння. В даний час теорія звичайних диференціальних рівнянь є багатою, широко розгалуженою теорією.

Рівняння з частковими похідними почали вивчатися значно пізніше. Потрібно підкреслити, що теорія рівнянь з частковими похідними виникла на основі конкретних фізичних завдань, що приводять до дослідження окремих рівнянь з частковими похідними, які отримали назву основних рівнянь математичної фізики. Вивчення математичних моделей конкретних фізичних завдань привело до створення в середині XVIII століття нової гілки аналізу - рівнянь математичної фізики, яку можна розглядати як науку про математичні моделі фізичних явищ.

Страницы: 1 2 3

Нове про педагогіку:

Інтегрований урок російської мови, математики, читання
Тема: Систематизація знань по російській мові, математиці, читанню. Мета: закріпити навики рахунку в межах 10, уміння вирішувати завдання на різницеве порівняння, закріпити знання словарних слів, умі ...

Основні граматичні поняття української мови, що вивчаються з морфології в 4-му класі початкової школи з російською мовою навчання
Програма з української мови для 4-го класу передбачає вивчення такого обсягу морфологічних понять. У 4 класі програмою передбачено для вивчення державної мови - 34 години, тобто 2 години на тиждень. ...

Навігація по сайту

Copyright © 2018 - All Rights Reserved - www.ipedahohika.com